
Boundary-Value Problems

Boundary-Value Problem (BVP): The solution of an ordinary differential equation
which must satisfy certain conditions specified for two or more values of the independent
variables.

A condition or equation is said to be homogeneous if, when it is satisfied by a partic-
ular function, y(x), it is also satisfied by cy(x), where c is an arbitrary constant. Here,
we are mainly concerned with homogeneous linear differential equations and associated

homogeneous boundary conditions.
For illustration purpose, let’s consider the following homogeneous linear differential

equation of 2nd order:

d2y

dx2
+ a1(x)

dy

dx
+ a2(x)y = 0 (1)

with boundary conditions
y(a) = 0 y(b) = 0 (2)

The general solution of equation (1) is of the form

y(x) = c1u1(x) + c2u2(x) (3)

where u1 and u2 are linearly independent. Substituting equation (3) into equation (2)
yields

c1u1(a) + c2u2(a) = 0 (4)

c1u1(b) + c2u2(b) = 0 (5)

Let

D =

∣

∣

∣

∣

u1(a) u2(a)
u1(b) u2(b)

∣

∣

∣

∣

(6)

If D 6= 0, then c1 = c2 = 0. Thus, the solution is trivial! If D = 0, then

u1(a)

u2(a)
=

u1(b)

u2(b)
= −c2

c1

(7)

Thus, the solution can be written as

y(x) = c2

[

c1

c2

u1(x) + u2(x)

]

= c2

[

−u2(a)

u1(a)
u1(x) + u2(x)

]

(8)

= C [u2(a)u1(x) − u1(a)u2(x)] (9)

where C is an arbitrary constant.
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In many cases, one or both of the functions a1(x) and a2(x) are dependent upon an
unspecified parameter λ, i.e.,

d2y

dx2
+ a1(x, λ)

dy

dx
+ a2(x, λ)y = 0 (10)

Thus, the solution becomes

y(x) = c1u1(x, λ) + c2u2(x, λ) (11)

Therefore, the requirement for equation (10) to have non-trivial solution is

∣

∣

∣

∣

u1(a, λ) u2(a, λ)
u1(b, λ) u2(b, λ)

∣

∣

∣

∣

= 0 (12)

Usually, more than one value of λ can be found to satisfy equation (12), i.e., λ =
λ1, λ2, · · · . They are refereed to as the characteristic values or eigenvalues. The corre-
sponding solutions are called characteristic functions.

[Example]

y′′ + λy = 0

y(0) = 0 y(L) = 0

General solution:
y = A cos

√
λx + B sin

√
λx

Apply BCs:

x = 0 y = A = 0

x = L y = B sin
√

λL = 0

Thus,

√
λL = nπ n = 0, 1, 2, · · ·

λn =
n2π2

L2
= characteristic values

y = B sin
nπ

L
x

ϕn(x) = sin
nπ

L
x = characteristic functions

�
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Orthogonality of Characteristic Functions

Two function ϕm(x) and ϕn(x) are said to be Orthogonal over an interval [a, b], if

∫ b

a

ϕm(x)ϕn(x)dx = 0 (13)

They are orthogonal with respect to a weighting function r̃(x) over an interval [a, b]
if

∫ b

a

r̃(x)ϕm(x)ϕn(x)dx = 0 (14)

A set of functions, {ϕk(x)|k = 1, 2, · · · }, is said to be orthogonal in [a, b], if all pairs
of distinct functions in the set are orthogonal in [a, b].

Consider the BVP which involves a linear homogeneous 2nd-order differential equa-
tion:

d

dx

[

p̃(x)
dy

dx

]

+ [q̃(x) + λr̃(x)] y = 0 (15)

where p̃(x), q̃(x) and r̃(x) are assumed to be real. Define an operator L as

L ≡ d

dx

(

p̃
d

dx

)

+ q̃ (16)

Equation (15) can thus be written as

Ly + λr̃(x)y = 0 (17)

It should be noted that any 2nd-order ODE of the form

a0(x)
d2y

dx2
+ a1(x)

dy

dx
+ [a2(x) + λa3(x)] y = 0 (18)

can be transformed to equation (15) by making the following substitution:

p̃(x) = exp

[
∫

a1(x)

a0(x)
dx

]

(19)

q̃(x) =
a2(x)

a0(x)
p̃(x) (20)

r̃(x) =
a3(x)

a0(x)
p̃(x) (21)
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Our concern here is to find the required boundary conditions of equation (15), such
that the characteristic functions are orthogonal to each other. Let λ1 and λ2 be two
distinct eigenvalues of equation (15) and ϕ1(x) and ϕ2(x) be the corresponding eigen-
functions,

d

dx

[

p̃(x)
dϕ1

dx

]

+ [q̃(x) + λ1r̃(x)] ϕ1 = 0 (22)

d

dx

[

p̃(x)
dϕ2

dx

]

+ [q̃(x) + λ2r̃(x)] ϕ2 = 0 (23)

ϕ2 × (22) − ϕ1 × (23)

ϕ2

d

dx

(

p̃
dϕ1

dx

)

− ϕ1

d

dx

(

p̃
dϕ2

dx

)

+ (λ1 − λ2)r̃(x)ϕ1ϕ2 = 0 (24)

(λ2 − λ1)

∫ b

a

r̃(x)ϕ1(x)ϕ2(x)dx =

∫ b

a

[

ϕ2

d

dx

(

p̃
dϕ1

dx

)

− ϕ1

d

dx

(

p̃
dϕ2

dx

)]

dx (25)

Integration by parts

RHS =

[

ϕ2

(

p̃
dϕ1

dx

)

− ϕ1

(

p̃
dϕ2

dx

)]b

a

−
∫ b

a

[

dϕ2

dx

(

p̃
dϕ1

dx

)

− dϕ1

dx

(

p̃
dϕ2

dx

)]

dx (26)

Notice that
∫ b

a

[

dϕ2

dx

(

p̃
dϕ1

dx

)

− dϕ1

dx

(

p̃
dϕ2

dx

)]

dx = 0
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Since the second term of RHS is zero,

(λ2 − λ1)

∫ b

a

r̃(x)ϕ1(x)ϕ2(x)dx =

{

p̃(x)

[

ϕ2(x)
dϕ1(x)

dx
− ϕ1(x)

dϕ2(x)

dx

]}b

a

(27)

Therefore, the requirements for
∫ b

a
r̃(x)ϕ1(x)ϕ2(x)dx = 0 are:

• The the RHS of equation (27) vanishes independently at x = a and x = b, i.e.,

y(x) = 0 (28)

or
dy

dx
= 0 (29)

or

y + α
dy

dx
= 0 (30)

at x = a or x = b. Equations (28) - (30) are referred to as the Sturm-Liouville

Conditions.

• The RHS of equation (27) will vanish at x = a or x = b when p̃(x) = 0, y(x) is
finite and y′(x) is finite (or p̃(x)y′(x) → 0) at x = a or x = b.

• The RHS of equation (27) will be cancelled out when

p̃(a) = p̃(b) (31)

y(a) = y(b) (32)

y′(a) = y′(b) (33)

In other words, ϕ1(x) and ϕ2(x) are periodic, of period (b − a).
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[Example]

d2y

dx2
+ λy = 0

BCs
y(0) = y(L) = 0

Notice that they are Sturm-Liouville conditions, i.e., equation (28). Therefore,

p̃(x) = 1 q̃(x) = 0 r̃(x) = 1

λn =
n2π2

L2

ϕn(x) = sin
(nπ

L
x
)

which have already been obtained before. Next, let’s verify orthogonality:

∫ L

0

sin
mπx

L
sin

nπx

L
dx =

L

2π

[

1

m − n
sin

(m − n)π

L
x − 1

m + n
sin

(m + n)π

L

]L

0

= 0

(m 6= n)
∫ L

0

sin2
nπx

L
dx =

L

2
> 0 (m = n)

�

If r̃(x) > 0 in [a, b], then Cn =
∫ b

a
r̃(x)ϕ2

n(x)dx > 0. Thus, if the multiplication factor
is introduced into ϕn(x) such that ϕ̄n = ϕn/

√
Cn, then ϕ̄n(x) is said to be normalized

w.r.t. r̃(x). A set of normalized orthogonal functions is said to be orthonormal.

[Example]

Cn =

∫ L

0

sin2
nπx

L
dx =

L

2

ϕ̄n(x) =

√

2

L
sin

nπx

L
n = 1, 2, · · ·

{ϕ̄n} is an orthonormal set, i.e.,

∫ L

0

ϕ̄2

n(x)dx = 1

∫ L

0

ϕ̄m(x)ϕ̄n(x)dx = 0 m 6= n

�
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Expansion of Arbitrary Functions in Series of Orthogonal Func-
tions

Suppose that the set of functions {ϕn} is orthogonal in a given interval [a, b] w.r.t. r̃(x).
We want to expand a given function f(x) in terms of ϕn, i.e.

f(x) =
∞

∑

n=0

anϕn(x) (34)

Assume that such an expansion exits, multiply both side by r̃(x)ϕk(x) (k = 0, 1, 2, · · · )

r̃(x)ϕk(x)f(x) =
∞

∑

n=0

anr̃(x)ϕk(x)ϕn(x) (35)

and integrate both side over [a, b], i.e.

∫ b

a

r̃(x)ϕk(x)f(x)dx =
∞

∑

n=0

an

∫ b

a

r̃(x)ϕk(x)ϕn(x)dx (36)

Notice that this equation is valid only if equation (34) is uniformly convergent in
[a, b]. Since {ϕn} is a set of orthogonal functions

ak =

∫ b

a
r̃(x)ϕk(x)f(x)dx
∫ b

a
r̃(x)ϕ2

k(x)dx
(37)
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Proper Sturm-Liouville Problem

A proper Sturm-Liouville problem is defined by equation (15) if

• p̃(x) > 0, q̃(x) ≤ 0 and r̃(x) > 0 in [a, b];

• Sturm-Liouville condition are satisfied;

• If the boundary condition y + α dy

dx
= 0 (α 6= 0) is imposed on x = a, or b, or both,

then (1) α1 < 0 at x = a, and (2) α2 > 0 at x = b.

Properties of a proper Sturm-Liouville problem

1. For a proper Sturm-Liouville problem,

• all eigenvalues are real and non-negative and

• all eigenfunctions are real.

2. If a Sturm-Liouville problem is proper, and if p̃(x), q̃(x) and r̃(x) are regular in
(a, b), then the representation of a bounded, piecewise differentiable function f(x)
in a series of eigenfunctions

• converges to f(x) inside [a, b] at all points where f(x) is continuous, and

• converges to the mean value 1

2
[f(x+) + f(x−)] at points where finite jumps

occur.

3. The series may or may not converge to the value of f(x) at end points of the
interval, i.e. when x = a or x = b.
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[Example] f(x) = x =
∑

∞

n=0
an sin nπ

L
x

Notice that
d2y

dx2
+ λy = 0 y(0) = y(L) = 0

is a proper Sturm-Liouville problem with p̃(x) = 1, q̃(x) = 0 and r̃(x) = 1. The
eigenvalues and eigenfunctions previously obtained are

λn =
n2π2

L2
ϕn(x) = sin

(nπ

L
x
)

Thus,
a0 = 0

an

L

2
= an

∫ L

0

sin2

(nπx

L

)

dx =

∫ L

0

x sin
(nπx

L

)

dx = −L2
1

nπ
(−1)n

an =
2L

π

(−1)n+1

n
n = 1, 2, 3, · · ·

f(x) = x =
2L

π

∞
∑

n=1

(−1)n+1

n
sin

(nπx

L

)

• x = 0 :
f(x) = 0 RHS = 0

• x = L :
f(L) = L RHS = 0 6= L

• x = L
2

:

f(L/2) =
L

2
RHS =

2L

π

(

1 − 1

3
+

1

5
− 1

7
· · ·

)

=

(

2L

π

)

(π

4

)

=
L

2

�
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BVP Involving Nonhomogeneous Differential Equations

Consider the differential equation

[

d

dx

(

p̃
dy

dx

)

+ q̃y

]

+ λr̃y = F (x) (38)

with homogeneous Sturm-Liouville boundary conditions. Here, λ is a given constant.
This equation can be written in operator notation, i.e.

Ly + λr̃y = F (x) (39)

Let us first consider the homogeneous equation

Ly + λr̃y = 0 (40)

together with the given BCs. Notice that the corresponding Sturm-Liouville problem
results in a set of orthogonal characteristic functions {ϕn(x)} such that

Lϕn(x) + λnr̃(x)ϕn(x) = 0 (41)

Now let us assume that the solution of equation (38) exists. This solution y(x) can be
expanded in the form

y(x) =
∞

∑

n=0

anϕn(x) (42)

Substituting this expression into equation (39) yields

L
[

∑

n

(anϕn)

]

+ λr̃
∑

n

(anϕn) = F (x) (43)

From equation (41),

L
[

∑

n

(anϕn)

]

+ r̃
∑

n

(λnanϕn) = 0 (44)

Subtract equation (44) from equation (43), i.e.

r̃(x)
∞

∑

n=0

(λ − λn)anϕn(x) = F (x) (45)

Let

f(x) =
F (x)

r̃(x)
=

∞
∑

n=0

Anϕn(x) and An = an(λ − λn) (46)

If f(x) is piecewise differentiable, the An can be determined. Thus,

y(x) =
A0

λ − λ0

ϕ0(x) +
A1

λ − λ1

ϕ1(x) + · · · (47)

From the above results, one can draw two important conclusions:

1. If F (x) ≡ 0 in [a, b], then from equation (45) λ = λk and k = 0, 1, 2, · · · .

2. If F (x) is not identically zero in [a, b], equation (47) shows that equation (38) has
a solution only when λ 6= λk (k = 0, 1, 2, · · · ).
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Fourier Series

Since the BVP

d2y

dx2
+ λy = 0 (48)

y(0) = y(L) = 0 (49)

has the eigenfunctions

ϕn(x) = sin
nπx

L
, n = 1, 2, 3, · · · (50)

From the previous discussions, a function can be expressed as

f(x) =
∞

∑

n=1

an sin
nπx

L
(51)

which is referred to as the Fourier sine series representation of f(x) in (0, L). The
coefficients an can be determined by

an =

∫ L

0
f(x) sin nπx

L
dx

∫ L

0
sin2 nπx

L
dx

(52)

Notice that
∫ L

0

sin2
nπx

L
dx =

1

2

∫ L

0

(

1 − cos 2
nπx

L

)

dx =
L

2
(53)

Thus,

an =
2

L

∫ L

0

f(x) sin
nπx

L
dx (54)

It can be observed from equation (51) that all terms of the RHS

1. are periodic and have the common period of 2L;

2. are odd functions, i.e.,
F (−x) = −F (x) (55)

Notice that
sin

(

−nπx

L

)

= − sin
(nπx

L

)
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It follows that in the interval (−L, 0) the series in equation (51) represents the func-
tion −f(−x), i.e.

f(x) =
∞

∑

n=1

an sin
nπx

L
x ∈ (0, L) (56)

Let x′ = −x and x′ ∈ (−L, 0). Then

f(−x′) =
∞

∑

n=1

an sin
nπ(−x′)

L
= −

∞
∑

n=1

an sin
nπx′

L
(57)

As a result,

−f(−x′) =
∞

∑

n=1

an sin
nπx′

L
x′ ∈ (−L, 0) (58)

If f(x) is an odd function, i.e., f(−x) = −f(x), then

f(x′) =
∞

∑

n=1

an sin
nπx′

L
x′ ∈ (−L, 0) (59)

Therefore,

• Equation (51) represents f(x) in (−L,L) if f(x) is an odd function.

• If f(x) is also periodic of period 2L, then equation (51) represents f(x) everywhere.

[Example] Express f(x) = ex in (0, π) with ϕn(x) = sin nx

an =
2

π

∫ π

0

ex sin (nx)dx =
2

π

n

n2 + 1
(1 − eπ cos nπ)

an =
2

π

n

n2 + 1

[

1 + eπ(−1)n+1
]

Thus,

2

π

[

eπ + 1

2
sin x − 2(eπ − 1)

5
sin 2x +

3(eπ + 1)

10
sin 3x − · · ·

]

=

{

ex x ∈ (0, π)
−e−x x ∈ (−π, 0)

�

[Exercise] Express the odd functions x and x3 in (−L,L) with ϕn(x) = sin nπx
L

�
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Similar series involving cosine functions can be obtained by considering the following
BVP:

d2y

dx2
+ λy = 0 (60)

y′(0) = y′(L) = 0 (61)

The corresponding eigenfunctions are:

ϕn(x) = cos
nπx

L
(62)

where, n = 0, 1, 2, · · · . Notice that ϕ0(x) = 1 is a member of the orthogonal set. Thus,

f(x) = a0 +
∞

∑

n=1

an cos
nπx

L
x ∈ (0, L) (63)

where,

a0 =

∫ L

0
f(x)dx

∫ L

0
dx

=
1

L

∫ L

0

f(x)dx (64)

an =

∫ L

0
f(x) cos nπx

L
dx

∫ L

0
cos2 nπx

L
dx

=
2

L

∫ L

0

f(x) cos
nπx

L
dx (65)

Equation (63) is known as the Fourier cosine series representation of f(x) in (0, L).
Since the RHS of equation (63) is an even function, i.e., cos(−nπx

L
) = cos(nπx

L
), then

f(−x) = a0 +
∞

∑

n=1

an cos
nπx

L
x ∈ (−L, 0) (66)

If f(x) is an even function, i.e., f(x) = f(−x), then f(x) can be represented by equation
(63) in (−L,L), i.e.

f(x) = a0 +
∞

∑

n=1

an cos
nπx

L
x ∈ (−L,L) (67)

[Example] Express f(x) = ex in (0, π) with ϕn(x) = cos nx

a0 =
1

π

∫ π

0

exdx =
1

π
(eπ − 1)

an =
2

π

∫ π

0

ex cos nxdx =
2

π

1

n2 + 1
(eπ cos nπ − 1) =

2

π

1

n2 + 1
[eπ(−1)n − 1]

2

π

(

eπ − 1

2
− eπ + 1

2
cos x +

eπ − 1

5
cos 2x − eπ + 1

10
cos 3x + · · ·

)

=

{

ex x ∈ (0, π)
e−x x ∈ (−π, 0)

�
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Complete Fourier Series

Any given function f(x) can be expressed as the sum of an even and an odd function,
i.e.

f(x) =
1

2
[f(x) + f(−x)] +

1

2
[f(x) − f(−x)] = feven(x) + fodd(x) (68)

One can express these two functions separately as

feven(x) = a0 +
∞

∑

n=1

an cos
nπx

L
x ∈ (−L,L) (69)

fodd(x) =
∞

∑

n=1

bn sin
nπx

L
x ∈ (−L,L) (70)

where,

a0 =
1

L

∫ L

0

feven(x)dx =
1

2L

∫ L

−L

feven(x)dx =
1

2L

[
∫ L

−L

f(x)dx −
∫ L

−L

fodd(x)dx

]

(71)

⇛ a0 =
1

2L

∫ L

−L

f(x)dx (72)

an =
2

L

∫ L

0

feven(x) cos
nπx

L
dx =

1

L

∫ L

−L

feven(x) cos
nπx

L
dx (73)

⇛ an =
1

L

∫ L

−L

f(x) cos
nπx

L
dx (74)

bn =
2

L

∫ L

0

fodd(x) sin
nπx

L
dx =

1

L

∫ L

−L

fodd(x) sin
nπx

L
dx (75)

⇛ bn =
1

L

∫ L

−L

f(x) sin
nπx

L
dx (76)

Thus,

f(x) = feven(x) + fodd(x) = a0 +
∞

∑

n=1

(

an cos
nπx

L
+ bn sin

nπx

L

)

(77)

Equation (77) is the complete Fourier series representation of f(x) in the interval
(−L,L). If f(x) is an even function, bn = 0. If f(x) is an odd function, a0 = an = 0. If
f(x) is neither even nor odd, then none of the coefficients are zero.
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[Example] Express f(x) = ex in (−π, +π) with complete Fourier series repre-
sentation.

a0 =
1

2π

∫

+π

−π

exdx =
1

2π
(eπ − e−π) =

1

π
sinh π

an =
1

π

∫

+π

−π

ex cos nxdx =
2

π

cos nπ

n2 + 1
sinh π

bn =
1

π

∫

+π

−π

ex sin nxdx = − 2

π

n cos nπ

n2 + 1
sinh π

ex =
sinh π

π

[

1 − 2
∞

∑

n=1

(−1)n+1

n2 + 1
(cos nx − n sin nx)

]
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Bessel Series

Consider the modified Bessel equation:

x2
d2y

dx2
+ x

dy

dx
+ (µ2x2 − p2)y = 0 (78)

in the interval (0, L). This equation can be written as

d

dx

(

x
dy

dx

)

+

(

−p2

x
+ µ2x

)

y = 0 (79)

If this equation is compared with

d

dx

[

p̃(x)
dy

dx

]

+ [q̃(x) + λr̃(x)] y = 0

then it can be observed that
p̃(x) = x

q̃(x) = −p2

x

r̃(x) = x

λ = µ2
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Compare with

d

dx

[

p̃(x)
dy

dx

]

+ [q̃(x) + λr̃(x)] y = 0 (80)

We can conclude that

p̃(x) = x q̃(x) = −p2/x r̃(x) = x λ = µ2 (81)

The general solution of equation (78) is of the following form

y(x) =

{

c1Jp(µx) + c2J−p(µx) if p is not an integer
c1Jp(µx) + c2Yp(µx) if p is a non-negative interger

(82)

Let us consider the interval (0, L). It is clear that p̃(0) = 0. Thus, the eigenfunctions
of the problem are orthogonal in (0, L) w.r.t. r̃(x) = x, if

1. x = 0

y(0) = finite (83)

y′(0) = finite (84)

2. x = L

One of the Sturm-Liouville conditions must be satisfied, i.e.,

y(L) = 0 (85)

or
y′(L) = 0 (86)

or
y′(L) + ky(L) = 0 k ≥ 0 (87)

Since y(0) = finite, then c2 = 0 due to the fact that J−p(0) and Yp(0) are not finite.
Thus,

y(x) = c1Jp(µx) (88)

• If y(L) = 0, then
Jp(µnL) = 0 (89)

• If y′(L) = 0, then
J ′

p(µnL) = 0 (90)

• If y′(L) + ky(L) = 0, then

J ′

p(µnL) + kJp(µnL) = 0 (91)
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In all three cases, the eigenfunctions are of the form

ϕn(x) = Jp(µnx) (92)

where µn is the solution of one of the equations (89), (90) and (91). As a result, these
functions are orthogonal in (0, L) w.r.t. r̃(x) = x, i.e.,

∫ L

0

xJp(µmx)Jp(µnx)dx = 0 (93)

where m 6= n.
Not all the eigenfunctions corresponding to a given p are needed in the orthogonal

set. This is due to the facts that

1. Since Jp(−x) = (−1)pJp(x), the solution of equations (89), (90) and (91) exist in
pairs, symmetrically located w.r.t. x = 0. On the other hand,

ϕn(x) = Jp(µnx) = (−1)pJp(−µnx) = (−1)pJp(µmx) = (−1)pϕm(x) (94)

where µm = −µn. Thus, ϕn(x) an ϕm(x) are linearly dependent and negative value
of µn need not be considered.

2. If µ0 = 0, there are two possible cases to be considered:

(a) p > 0

Notice that

Jp(x) =
∞

∑

k=0

(−1)k
(

x
2

)2k+p

k!Γ(k + p + 1)
(95)

ϕ0(x) = Jp(µ0x) = Jp(0) = 0 (96)

Thus, ϕ0(x) can not be an eigenfunction.

(b) p = 0

Note that

J0(x) = 1 − x2

22
+

x4

24(2!)2
− x6

26(3!)2
+ · · · (97)

Thus, only equation (90) is possible and ϕ0(x) = J0(µ0x) = J0(0) = 1.

Conclusion: It is necessary to consider only the set of functions {ϕn(x)} corresponding
to positive values of µn (n = 1, 2, 3, · · · ) in all cases, except in the case of equation (90)
when p = 0, in which case the eigenfunction ϕ0(x) = 1 corresponding to µ0 = 0 must be
added to the set.
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Let us temporarily exclude the exceptional case, i.e., equation (90) with p = 0, and
consider the series representation of a function:

f(x) =
∞

∑

n=1

anJp(µnx) (98)

where p > 0 and µn is the positive solution of equation (89), (90) or (91). Since the
functions in the series form an orthogonal set,

an =
1

cn

∫ L

0

xf(x)Jp(µnx)dx (99)

where

cn =

∫ L

0

x [Jp(µnx)]2 dx (100)

To determine cn, we have to go through an indirect route. First, substitute a character-
istic function ϕn(x) in equation (79):

d

dx

(

x
dϕn

dx

)

+

(

−p2

x
+ µ2

nx

)

ϕn = 0 (101)

and then multiply both sides by 2xϕ′

n

2x
dϕn

dx

d

dx

(

x
dϕn

dx

)

+ 2x
dϕn

dx

(

−p2

x
+ µ2

nx

)

ϕn = 0 (102)

Thus,
(

µ2

nx
2 − p2

) d

dx

(

ϕ2

n

)

= − d

dx

[

(

x
dϕn

dx

)2
]

(103)

Integrate both sides over (0, L):

LHS =

∫ L

0

(

µ2

nx
2 − p2

) d

dx

(

ϕ2

n

)

dx =
[(

µ2

nx
2 − p2

)

ϕ2

n

]L

0
− 2µ2

n

∫ L

0

xϕ2

ndx (104)

RHS = −
∫ L

0

d

dx

[

(

x
dϕn

dx

)2
]

dx = −
[

x2

(

dϕn

dx

)2
]L

0

= −
[

x2

(

dϕn

dx

)2
]

x=L

(105)

In equation (104), notice that ϕn(x) = Jp(µnx) and

[(

µ2

nx
2 − p2

)

ϕ2

n

]

x=0
= 0 (106)

This is because

1. If p > 0, ϕn(0) = Jp(0) = 0.

2. If p = 0, ϕ0(0) = J0(0) = 1. But µ2
nx

2 − p2 = 0 − 0 = 0.
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Thus,

cn =

∫ L

0

x [Jp(µnx)]2 dx =
1

2µ2
n

{

(

µ2

nx
2 − p2

)

[Jp(µnx)]2 + x2

[

d

dx
Jp(µnx)

]2
}

x=L

(107)
The derivative of Jp(µnx) in the above equation can be obtained with the identity

d

dx
Jp(µnx) = −µnJp+1(µnx) +

p

x
Jp(µnx) (108)

• If equation (89) is satisfied, i.e., Jp(µnL) = 0, then from equations (107) and (108)
we can get

cn =
L2

2
[Jp+1(µnL)]2 (109)

• If equation (90) is satisfied , i.e., J ′

p(µnL) = 0, the from equation (107) we get

cn =
µ2

nL
2 − p2

2µ2
n

[Jp(µnL)]2 (110)

• If equation (91) is satisfied , i.e., J ′

p(µnL) = −kJp(µnL), the from equation (107)
we get

cn =
(µ2

n + k2)L2 − p2

2µ2
n

[Jp(µnL)]2 (111)

Now let’s turn to the exceptional case, i.e., equation (90) with p = 0. In other words,

J ′

0(µnL) = 0 (112)

Specifically, all solutions of equation (112) have to be considered, including µ0 = 0.
The series representation becomes

f(x) = a0 +
∞

∑

n=1

anJ0(µnx) (113)

where

a0 =

∫ L

0
xf(x)dx

∫ L

0
xdx

=
2

L2

∫ L

0

xf(x)dx (114)

while an can be determined with the method described previously with cn given by
equation (110).
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[Example] Express f(x) = 1 in interval (0, L) by Bessel series of order zero.
The eigenvalues are the solutions of J0(µnL) = 0.

f(x) = 1 =
∞

∑

n=1

anJ0(µnx)

where αn = µnL satisfies
J0(αn) = 0

From table
α1 = 2.4048, α2 = 5.5201, α3 = 8.6537,

α4 = 11.7915, α5 = 14.9309, α6 = 18.0711

· · ·

an =
1

cn

∫ L

0

xJ0(µnx)dx

From equation (109),

cn =
L2

2
[J1(µnL)]2

From the integral property of Jp:

∫

ηxpJp−1(ηx)dx = xpJp(ηx)

Let η = µn and p = 1,

∫

µnxJ0(µnx)dx = xJ1(µnx)

Thus,
∫ L

0

xJ0(µnx)dx =
x

µn

J1(µnx)

∣

∣

∣

∣

L

0

=
L

µn

J1(µnL)

an =
(L/µn)J1(µnL)

(L2/2) [J1(µnL)]2
=

2

µnL

1

J1(µnL)

f(x) = 1 =

(

2

L

) ∞
∑

n=1

J0(µnx)

µnJ1(µnL)

�
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[Example] Express f(x) = 1−x2 in interval (0, 1) by Bessel series of order zero.
The eigenvalues are the solutions of J0(µn) = 0.

f(x) = 1 − x2 =
∞

∑

n=1

anJ0(µnx)

where αn = µn satisfies
J0(αn) = 0

From table
α1 = 2.4048, α2 = 5.5201, α3 = 8.6537,

α4 = 11.7915, α5 = 14.9309, α6 = 18.0711

· · ·

an =
1

cn

∫

1

0

x(1 − x2)J0(µnx)dx

From equation (109),

cn =
1

2
[J1(µn)]2

From the integral property of Jp:

∫

ηxpJp−1(ηx)dx = xpJp(ηx)

Let η = µn and p = 1,

∫

µnxJ0(µnx)dx = xJ1(µnx)

Let η = µn and p = 2,

∫

µnx
2J1(µnx)dx = x2J2(µnx)

∫

1

0

x(1 − x2)J0(µnx)dx =

∫

1

0

xJ0(µnx)dx −
∫

1

0

x3J0(µnx)dx

∫

1

0

xJ0(µnx)dx =
x

µn

J1(µnx)

∣

∣

∣

∣

1

0

=
1

µn

J1(µn)

∫

1

0

x3J0(µnx)dx = x2
x

µn

J1(µnx)

∣

∣

∣

∣

1

0

−
∫

1

0

x

µn

J1(µnx)(2x)dx

=
1

µn

J1(µn) − 2

µn

∫

1

0

x2J1(µnx)dx

=
1

µn

J1(µn) − 2

µ2
n

J2(µn)
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Thus,
∫

1

0

x(1 − x2)J0(µnx)dx =
2

µ2
n

J2(µn)

an =

2

µ2
n

J2(µn)

1

2
[J1(µn)]2

=
4J2(µn)

µ2
nJ

2
1 (µn)

[Example] Express f(x) =

{

x 0 < x < 1
0 1 < x < 2

in interval (0, 2) by Bessel series of

order 1. The eigenvalues are the solutions of J1(2µn) = 0.

Let αn = 2µn. From table,

α1 = 3.8317 α2 = 7.0156 α3 = 10.1735

α4 = 13.3237 α5 = 16.4706

The series we seek is

f(x) =
∞

∑

n=1

anJ1(µnx), 0 < x < 2

where

an =
1

cn

∫

2

0

xf(x)J1(µnx)dx

and from equation (109)

cn =
L2

2
[Jp+1(µnL)]2 = 2J2

2 (2µn)

From the integral property of Jp:

∫

ηxpJp−1(ηx)dx = xpJp(ηx)

Let η = µn and p = 2,
∫

µnx
2J1(µnx)dx = x2J2(µnx)

∫

2

0

xf(x)J1(µnx)dx =

∫

1

0

x2J1(µnx)dx =
x2

µn

J2(µnx)

∣

∣

∣

∣

1

0

=
1

µn

J2(µn)

Thus,

an =

1

µn

J2(µn)

2J2
2 (2µn)

=
J2(µn)

2µnJ2
2 (2µn)

f(x) =
∞

∑

n=1

J2(µn)

2µnJ2
2 (2µn)

J1(µnx), 0 < x < 2
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Legendre Series

Consider the Legendre equation

(1 − x2)
d2y

dx2
− 2x

dy

dx
+ p(p + 1)y = 0 (115)

where x ∈ (−1, 1). This equation can be written as

d

dx

[

(1 − x2)
dy

dx

]

+ p(p + 1)y = 0 (116)

Let us compare this equation with

d

dx

[

p̃(x)
dy

dx

]

+ [q̃(x) + λr̃(x)] y = 0 (117)

Thus, p̃(x) = 1 − x2, q̃(x) = 0, r̃(x) = 1 and λ = p(p + 1).
From the fact that p̃(±1) = 0, we can conclude that, if y(±1) = finite and y′(±1) =

finite, then any two distinct roots of Legendre equation are orthogonal w.r.t r̃(x) = 1 in
the interval (−1, +1). Since the solutions of Legendre equation are finite at x = ±1 only
if p is a positive integer or zero, it is only necessary to consider p = 0, 1, 2, · · · . Thus,
the eigenfunctions are

ϕn(x) = Pn(x) = Legendre Polynomial (118)

The corresponding orthogonality condition is

∫

+1

−1

Pm(x)Pn(x)dx = 0 (m 6= n) (119)

A function f(x) which is piecewise differentiable in the interval (−1, +1) can be
represented by

f(x) =
∞

∑

n=0

anPn(x) (120)

where

an =

∫

+1

−1
f(x)Pn(x)dx

∫

+1

−1
P 2

n(x)dx
(121)

Let us substitute the Rodrigues’ formula:

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n (122)

into the integral

∫

+1

−1

g(x)Pn(x)dx =
1

2nn!

∫

+1

−1

g(x)
dn

dxn
(x2 − 1)ndx (123)
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Assuming the first k derivatives for g(x) exist and continuous in (−1, +1) and noticing
that

d

dx
(x2 − 1)n =

d2

dx2
(x2 − 1)n = · · · =

dn−1

dxn−1
(x2 − 1)n = 0 (124)

at x = ±1, one can integrate equation (123) by parts k times (k ≤ n) to obtain

∫

+1

−1

g(x)Pn(x)dx =
(−1)k

2nn!

∫

+1

−1

[

dk

dxk
g(x)

] [

dn−k

dxn−k
(x2 − 1)n

]

dx (125)

When k = n,
∫

+1

−1

g(x)Pn(x)dx =
(−1)n

2nn!

∫

+1

−1

(x2 − 1)n dng(x)

dxn
dx (126)

Let

g(x) = Pn(x) =
1

2nn!

dn

dxn
(x2 − 1) (127)

Thus,
dng(x)

dxn
=

dnPn(x)

dxn
=

1

2nn!

d2n

dx2n
(x2 − 1)n =

(2n)!

2nn!
(128)

It can also be shown that
∫

+1

−1

(1 − x2)ndx =
22n+1(n!)2

(2n + 1)!
(129)

Substituting equations (128) and (129) into equation (126) yields

∫

+1

−1

P 2

n(x)dx =
2

2n + 1
(130)

Consequently, equation (121) can be written as

an =
2n + 1

2

∫

+1

−1

f(x)Pn(x)dx =
2n + 1

2n+1n!

∫

+1

−1

(1 − x2)n dnf(x)

dxn
dx (131)

Notice that Pn(x) is an even function if n is even and Pn(x) is an odd function if n
is odd. Thus, if f(x) is an even function

an =

{

0 if n is odd

(2n + 1)
∫

+1

0
f(x)Pn(x)dx if n is even

(132)

On the other hand, if f(x) is an odd function, then

an =

{

(2n + 1)
∫

+1

0
f(x)Pn(x)dx if n is odd

0 if n is even
(133)

From equation (131), one can also see that any polynomial of degree N can be
expressed as a linear combination of the first N + 1 Legendre polynomials.
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[Example] Express f(x) = x2 as a Legendre series in (−1, +1).

Since x2 is a polynomial,

x2 = a0P0(x) + a1P1(x) + a2P2(x)

a3 = a4 = a5 = · · · = 0

This is due to
dkf(x)

dxk
= 0

for k = 3, 4, · · · .
Since f(x) = x2 is even, a1 = 0. Let us make use of equation (131) for n = 0, 2, i.e.,

a0 =
1

2

∫

+1

−1

x2dx =
1

3

a2 =
5

232!

∫

+1

−1

(1 − x2)2dx =
2

3

Thus,

x2 =
1

3
[P0(x) + 2P2(x)]

where P0(x) = 1, P1(x) = x and P2(x) = 1

2
(3x2 − 1).
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